
DIGITAL TECHNOLOGIES & HANGARAU MATIHIKO

Lifestyle programming

Teaching and learning
programme

NCEA Level 2

Developed by Jennifer Gottschalk, Massey High School

External links to websites
The Ministry of Education does not accept any liability
for the accuracy of information on external websites, nor
for the accuracy or content of any third-party website
accessed via a hyperlink from this resource. Links to
other websites should not be taken as endorsement of
those sites or of products offered on those sites. Some
websites have dynamic content, and we cannot accept
liability for the content that is displayed.

Cover image © Crown

Published 2019 by the Ministry of Education
PO Box 1666, Wellington 6011, New Zealand

www.education.govt.nz
All rights reserved
Copyright © Crown 2019

 1DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

By the end of this teaching and
learning programme, students will be
able to:

•	 design an advanced computer program using a
variety of advanced programming techniques

•	 develop robust and flexible computer
programs that are easy to use

•	 be ethical when designing and creating their
outcome.

Duration
15–20 weeks.

The big ideas

•	 An outcome can be decomposed into smaller
components.

•	 Each component can be developed, tested
and, where relevant, refined.

•	 Component code can be combined to create a
fully functional program.

•	 The program should be comprehensively
tested to ensure that it works as intended.

•	 A function is a named section of a problem
that performs a specific task eg the
programme is a series of modules.

•	 Usability is important! Volunteers can test
code and changes made to ensure that the
final outcome is easy to use.

•	 Version control should be used to facilitate
the process.

Summary of the teaching and learning programme
This teaching and learning programme is based on an eBook tutorial (flipped learning pedagogy) that
includes embedded video. Students are given several problems related to real-world situations and
are encouraged to develop programs to solve these problems. No prior programming knowledge is
assumed, although previous programming experience is extremely useful.

One of the strengths of this resource is that students can work through the material at their own pace.
Much of the teaching is included in the form of video tutorials, giving teachers more time to support
individual students to gain the skills needed to create advanced programs.

Alignment to the New Zealand
Curriculum

DTHM – Computational Thinking: Progress
outcome 7

Students use an iterative process to design,
develop, document and test advanced computer
programs.

DTHM - Designing and developing digital
outcomes: Progress outcome 5

Links to other learning areas

The first task, a recipe moderniser, links to
food technology and hospitality. The second
task, a book-review generator, links to English.
Throughout the process, students use skills
learned in mathematics.

Teachers are welcome to add extra tasks (or
edit the existing tasks) if they wish to connect to
other learning areas

Teaching and learning pedagogy

The programme uses ‘flipped’ learning, where
the process has been videoed and students
are encouraged to create their own programs
by following the video tutorials. They are
also encouraged to go beyond the basics
where possible. By using an eBook with video,
teachers are free to work with individuals and
troubleshoot in a way that would not be possible
using more traditional methods.

 2DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Teachers could encourage students to
collaborate and work in small groups during the
learning phase for this standard.

At this level, students are well on their way to
becoming independent learners, and they should
be expected to use online resources such as
Stack Overflow to find answers to their questions
and help them solve coding problems.

Prior knowledge and place in the
learning journey

No prior knowledge of Python is assumed.
However, students who have experience in
writing Python programs will be able to make
rapid progress and will benefit from the use of
this resource.

How might you adapt this in
your classroom?
The tasks in the support files can be modified
to suit a given class. Students should be
encouraged to go beyond the basics if they
have prior programming experience. While
the resource is focused on Python programs,
students could be encouraged to develop similar
outcomes in the language of their choice.

The context of the programs can easily be
changed. Teachers could ask students to
create a nutrition calculator, calorie counter or
even a meal suggestion app (where users input
food that they have at hand and the program
outputs recipes or meal ideas based on the listed
ingredients).

Assessment
The default assessment task asks students
to create a shopping-comparison tool using
achievement standards 91896 and 91897.
Students who wish to create an alternative
program should be allowed to ‘pitch’ their idea
and then create their desired outcome provided
it will allow them to meet standards 91896
and 91897.

Resources required
The learning resource for this programme
is found in the ePub and support files. Note
that this includes ‘teacher only’ answers and
a Teaching Guide. All of the resources are
found here:

•	 ePub, videos and Teacher-only Answers

•	 Support files

Students will also need access to:

•	 Python

•	 Google Documents / Word

•	 gist.githum.com – used for version
control

Software used:

•	 Python 3.x

•	 PyCharm (optional but very useful).

https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6

 3DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Students will need to develop a series of programs. For each program, they should work through the following steps so that when they are ready to be assessed,
they have a good understanding of how to decompose the task into components, use project management tools (including version control) and create working code.

1.	 Decompose the problem (ie, break the problem down into a series of smaller components)

2.	 For each component:

a.	 Plan how the component will be created (possibly by writing pseudocode or a ‘to do’ list in Trello).

b.	 Write a test plan that allows all logical pathways for the component to be tested.

c.	 Create the code using sensible variable names and comments that describe the code’s behaviour. Students should ensure that they follow the conventions of
their chosen programming language.

d.	 Test the code.

e.	 Refine the code if necessary, remembering to use version control as part of this process.

3.	 Once the components have been created and tested, make a working program by combining the components.

4.	 Test the program to ensure that it works.

5.	 Get a volunteer to test the program and make notes on improvements or refinements that can be made to make the program easier to use.

6.	 Make the changes and retest.

7.	 Write a brief paragraph explaining how the information from planning, testing and trialling of the components has resulted in a high-quality outcome. If students
prefer, they can submit video evidence in which they explain how they used planning, testing and trialling to create (and refine) their outcome.

Teacher Note: The duration or timing outlined below may vary – the times given assume students have no prior Python or programming experience. For students who
have programmed at Level 1, the time scales will either be shorter, or their outcomes will be more sophisticated.

TERM OUTLINE

 4DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Specific learning outcomes
(may include what will be
covered)

Duration Learning activities Resources provided

Students should be able to
submit a fully functioning, easy-
to-use program with evidence
of how the program was
developed, tested and refined.
See Term Outline above for
more details.

5 weeks Recipe moderniser task

See cycle above. In addition to learning how to
decompose a problem and manage the development of a
program, students will also learn how to:

•	 get input from a user and check that it is not blank

•	 get numeric input from a user and check that it is valid

•	 find a scale factor based on user input

•	 split user input into a number, unit and ingredient (string
manipulation)

•	 create a dictionary from a CSV file

•	 convert amounts using information looked up in a
dictionary (using a function)

•	 refine the program to make it easier to use (ie, by
adding in an introduction that is made available to first
time users).

Teaching material

ePub document

relevant_implications.pdf

Support files

01_ingredients_ml_to_g.csv

01_Recipe_Scaler document

See above for specific learning
outcome

3 weeks Review generator

See cycle above.

Students will also learn how to:

•	 create robust functions that use multiple parameters

•	 use a dictionary that has a key and a value. The value is
a list (which is a clever way of having a single key with
multiple values)

•	 set up code so that it copes with a wide variety of
possible responses

•	 create lists based on the content of a single column .txt
file.

Teaching Material

ePub document

relevant_implications.pdf

Support Files

02_Review_Generator

02_review_adjectives

https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6

 5DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Specific learning outcomes
(may include what will be
covered)

Duration Learning activities Resources provided

See above for specific learning
outcome

2 weeks Fund-raising profit calculator

See cycle above. Students will be given minimal video
support for this task in the hope that they will be able to
solve the problem and develop a working outcome by
using knowledge gained from the previous tasks. They will
need to pay close attention to how to work with or sort
two-dimensional arrays. One of the requirements of the
task will be for the program to output the costs of creating
the project from highest to lowest.

Teaching material

ePub document

relevant_implications.pdf

Support files

03_Fund_Raising_Calculator

See above for specific learning
outcome

3 weeks Budget helper

See cycle above. Students should be able to complete this
task independently.

Support files

04_Budget_Calculator

Assessment 3 weeks See task below.

https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6
https://seniorsecondary.tki.org.nz/Technology/Digital-technologies/T-and-L-programmes/NZC-L7-NCEA-L2/Programme-6

 6DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

ASSESSMENT TASK: LIFESTYLE PROGRAMMING – PRICE COMPARISON TOOL

Curriculum key
concepts

Computational thinking: Students will decompose a program into its components and then write (and test) code to solve each
part of the problem before assembling the components into a fully functional whole. That is, they will use a process to design,
develop, document and test an advanced computer program.

Planning for practice: students will use suitable planning and version control tools to support the development of their outcome.

Students will also take the end-user into account and ensure that their outcome is easy to use.

Achievement
standard(s)

91896 Use advanced programming techniques to develop a computer program

91897 Use advanced processes to develop a digital technologies outcome

NCEA Level 2

Credits 91896 – 6

91897 – 6

Learning time guidance 17 weeks for the learning

3 weeks, 15 hours’ class time for the assessment

Length guidance if
appropriate

Documentation showing the testing of the components as they are developed and refined can be quite lengthy because annotated
screenshots tend to take up a large amount of space.

However, this should be managed to be as concise as possible.

Due date Teacher to insert

 7DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

ASSESSMENT TASK: LIFESTYLE PROGRAMMING – PRICE COMPARISON TOOL

Achievement criteria (AS91896)

Achieved Merit Excellence

Use advanced programming techniques to
develop a computer program.

Use advanced programming techniques to
develop an informed computer program.

Use advanced programming techniques to
develop a refined computer program.

Achievement criteria (AS91897)

Achieved Merit Excellence

Use advanced processes to develop a digital
technologies outcome.

Use advanced processes to develop an informed
digital technologies outcome.

Use advanced processes to develop a refined
digital technologies outcome.

 8DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

ASSESSMENT TASK: LIFESTYLE PROGRAMMING – PRICE COMPARISON TOOL

Your task:

You want an easy way to compare the price of various products and have
decided to write a computer program to allow you to do this.

Specifications:

•	 Your program will calculate the unit price for each product, display the price
comparison information in an easy-to-read format and recommend the ‘best
buy’ based on value for money and the available funds.

•	 Your program should ask the user how much money they have on-hand. You
should decide on a suitable minimum amount (eg, $10.00)

•	 Your program should allow users to enter the details for multiple products
that are being compared.

What you need to think about before you begin this assessment:

•	 Who your program is aimed at

•	 What user inputs you will need

•	 How you can ensure that users enter valid input

•	 How the data will be manipulated, stored and retrieved to solve the problem

•	 How you will give feedback to the user

•	 How you can explain and address the relevant implications.

What you need to do (follow these steps):

1.	 Decide on an appropriate planning methodology and what project
management and version-control tools you will use to manage your
program development.

2.	 Set up any necessary planning or project management tools.

3.	 Decide how you will collect input from your users and how you will
structure your output. For example:

a.	 How will you get users to give the input you need to compare prices?

b.	 How will you ensure that users enter valid input?

c.	 Will your program allow users to enter amounts in different units (eg,
grams and kilograms)?

d.	 Will you allow users to go over budget for comparison purposes?

e.	 How will you display the results to the user? Will they be alphabetical or
by price (or will you let the user decide)?

4.	 Decompose your program into the different components you need to
incorporate into the final program (eg, get input, calculate unit price, sort
data, present results).

5.	 Throughout your development, you must trial multiple components. For
example, this could include different ways to get user input, different ways
of handling prices that are over-budget, etc.

6.	 Select the best components to include in your final program, based on the
results of your testing and trialling.

 9DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

ASSESSMENT TASK: LIFESTYLE PROGRAMMING – PRICE COMPARISON TOOL

7.	 Use your selected version control tools and techniques to save successive
versions of your code and keep evidence of how you created the program
in an ongoing manner (eg, screenshots showing your file structure with
appropriately named versions and program components, including brief
annotations of the changes made in each version).

8.	 Ensure that your testing and trialling includes both expected cases and
relevant boundary cases (eg, what happens when users get close to their
budget). You may want to get other students or your family or whānau
to test your program at each stage and provide feedback to help you
improve your final program. Using others to test the program will help to
ensure that it is comprehensively tested for many different cases (including
expected and relevant boundary cases). Note the improvements that could
be made based on the testing and implement your changes.

9.	 You should also think about the advanced programming techniques that
will best make your program flexible and robust.

10.	 Throughout the development of your program code, ensure that you
document your program with appropriate variable and module names and
comments that describe code function and behaviour. Follow the common
conventions of your programming language (eg, naming conventions or
rules for program layout). The code should be well-structured and logical.

11.	 Comprehensively test your final program to ensure that it functions
correctly and is of high quality (eg, bug-free, has well-presented and easy-
to-understand instructions, contains all the required information).

12.	 Note: Testing can be recorded by making a brief screencast showing
the outcome being comprehensively tested. If desired, you can take
screenshots of your screencast and annotate them.

13.	 Discuss how the information from planning, testing and trialling the
components of your program assisted you to develop a high-quality
outcome. This can be in the form of a screencast, document with
annotated screenshots, online presentation or oral presentation to your
teacher or class.

14.	 Show how your program has addressed the relevant implications.

What you will hand in:

•	 Material that:

	– explains the relevant implications (A) and shows how they have been
addressed (M/E)

	– shows how project management tools have been used to manage
the programming process (eg, evidence could include a series of
screenshots showing how a Trello or Kanban board has been used to
manage the outcome’s development)

	– shows how the task has been decomposed

	– shows how each component has been developed and tested,
including trialling and testing of techniques where appropriate

	– provides evidence that the completed program has been
comprehensively tested

	– includes evidence of how version control has been used

	– explains how you used the information from your trialling and testing
to develop a high-quality outcome.

•	 Your code. This should include:

	– the code for the various components

	– code for a fully working program (and any other files that are needed
to run the program).

 10DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Final grades will be determined on a holistic judgment of the evidence against the achievement criteria.

CRITERIA JUDGMENTS COMMENTS

Written code for a program that
performs a specified task

For example (partial evidence):

The student’s program allows text variables entered by users to be stored under the
product’s name, uses Boolean variables to control loops that check data is valid and uses
float variables for the cost–unit price. They have used sequence, selection and iteration
control structures within their code. The program processes input from the user and
outputs a valid recommendation.

Used advanced techniques in a
suitable programming language

For example (partial evidence):

Functions are used to check if user input is valid and/or do calculations that would
otherwise be repeated in the code. The program uses a two-dimensional array or list to
store and update information (eg, item name, amount, price and unit cost).

Set out the program code clearly
and documented the program
with comments

For example (partial evidence):

Most of the variable names are clear, and the code includes some comments, but these
comments don’t describe the code’s function.

Eg, # Unit cost

Tested and debugged the
program to ensure that it works
on a sample of expected cases

For example (partial evidence):

The student has provided evidence of testing their program. The program works on
expected input but may crash on boundary or invalid input. For example, screenshots,
testing tables.

ASSESSMENT
SCHEDULE

AS91896 USE ADVANCED PROGRAMMING TECHNIQUES TO DEVELOP A COMPUTER
PROGRAM
Programme 6: Lifestyle programming
Credits: 6

 11DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Final grades will be determined on a holistic judgment of the evidence against the achievement criteria.

CRITERIA JUDGMENTS COMMENTS

Documented the program with
appropriate variable or module
names and comments that
describe code function and
behaviour

For example (partial evidence):

The student uses descriptive variable and function names, eg, the number-checking
function might have been called ‘num_check’, the variable holding the value of the unit cost
might be called ‘unit_cost’. The code has comments at key points, eg, ‘function checks that
user input is a number that is between a given lower and upper bound’.

Followed common conventions
for the chosen programming
language

For example (partial evidence):

The student uses snake_case. Function definitions are placed before or after the main
function, as per the programming language. Layout conventions are followed, eg,
whitespace between definitions. Indentation and/or bracketing conventions are followed as
per the programming language. The student has used an automated tool to check that their
code follows common conventions.

Tested and debugged the
program effectively to ensure
that it works on a sample of both
expected and relevant boundary
cases

For example (partial evidence):

The student has provided evidence of testing to confirm that it works correctly on a range
of boundary cases, eg, for a budget of between $5 and $100, has tested at $4.99, $5.00,
$100.00 and $100.01.

Student testing methodology is effective within the context of the problem.

ASSESSMENT
SCHEDULE

AS91896 USE ADVANCED PROGRAMMING TECHNIQUES TO DEVELOP A COMPUTER
PROGRAM
Programme 6: Lifestyle programming
Credits: 6

 12DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Final grades will be determined on a holistic judgment of the evidence against the achievement criteria.

CRITERIA JUDGMENTS COMMENTS

Ensured that the program is a
well-structured, logical response
to the task

For example (partial evidence):

The student has used functions where appropriate. Functions have been used to avoid
repeated code. The code is a well-structured, logical response. For example, lack of use of
global variables, narrowest possible scopes for variables, functions which perform one task,
exceptions handled as close to where they were raised as possible.

Made the program flexible and
robust

For example (partial evidence):

It is easy to extend the functionality of the code (eg, a function has been used to check that
units are valid, it would be easy to update the function to add units from other countries,
ie, ounces and pounds instead of g and kg). The code works for expected, unexpected and
boundary values. They have used appropriate techniques, such as try/except to check for
validity.

Comprehensively tested and
debugged the program.

For example (partial evidence):

Student has supplied test plans and/or annotated screenshots or a screencast showing
that the program components (and final program) have been tested to ensure that it works
correctly, eg, they have used others to comprehensively test their program to ensure that it
responds gracefully to a variety of input.

ASSESSMENT
SCHEDULE

AS91896 USE ADVANCED PROGRAMMING TECHNIQUES TO DEVELOP A COMPUTER
PROGRAM
Programme 6: Lifestyle programming
Credits: 6

 13DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Final grades will be determined on a holistic judgment of the evidence against the achievement criteria.

CRITERIA JUDGMENTS COMMENTS

Used an appropriate planning
methodology to plan the
development of a digital
technologies outcome

For example (partial evidence):

The student has decided to follow an Agile-based planning methodology.

The student has used Trello (or an off-line visual planning board) to manage their development
process. Student code is clearly named and shows version numbers or indicates which part
of the decomposition has been coded. They have used GiST to create versions of the various
components at key points. This allows the teacher access to the code and ensures that it is
backed up in the cloud.

At least 2 project methodology techniques or tools are required.

Decomposed the outcome
into smaller components

For example (partial evidence):

They have broken their outcome down into a series of components. For each component, they
have created a piece of code and tested that code.

Trialled the components For example (partial evidence):

They have trialled different methods for getting user input, such as allowing users to enter one
item at a time in one line vs prompting users for each item’s name, amount, unit and cost.

Towards the end of the process, the components have been combined into a fully working
version of the outcome.

Tested that the digital
outcome functions as
intended

For example (partial evidence):

The student has provided evidence of testing with expected cases. They have also provided
screenshot or screencast evidence showing that the actual program works as expected. They
may not have had others test the program or looked at boundary or unexpected cases.

Explained the relevant
implications

For example (partial evidence):

Student has explained the importance of creating code that is functional and easy to use.
They have explained why their program needs to be clearly laid out.

ASSESSMENT
SCHEDULE

ACHIEVEMENT STANDARD 91897 USE ADVANCED PROCESSES TO DEVELOP A DIGITAL
TECHNOLOGIES OUTCOME
Programme 6: Lifestyle programming
Credits: 6

 14DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Final grades will be determined on a holistic judgment of the evidence against the achievement criteria.

CRITERIA JUDGMENTS COMMENTS

Trialled multiple components
and/or techniques and
selected those that are most
suitable

For example (partial evidence):

The student trialled various techniques for getting input from the user. They trialled
alternative functions to get users to input data. They selected the function that provided
users with the best way of entering the data.

Used information
appropriately from testing
and trialling to improve the
functionality of the digital
technologies outcome

For example (partial evidence):

They trialled different input methods with friends and family and selected the one that was
rated easiest to use and understand by the testers.

Used project management
and version control tools
and techniques to effectively
manage the development of a
digital technologies outcome

For example (partial evidence):

The student has updated their development plan when they realised a new component was
needed to improve the program, making it easier to sort and display the data.

They have saved versions of the outcome (eg, developing new versions of the working file)
at each stage of the development. They have written easily understood descriptions for each
GiST that has been created (these are automatically dated by the system).

They have used evidence from their trialling to inform their decisions when updating their
project plan.

Addressed the relevant
implications

For example (partial evidence):

For example (partial evidence):

The student has created a program that functions as intended and is easy to use (rather
than just explaining that these are important attributes). They have provided annotated
screenshots of their program to illustrate what they have done to address functionality,
usability, accessibility (etc.) implications. As the output is essentially text, aesthetics is less
relevant than other implications but having a clear, easy-to-read layout is still important.

ASSESSMENT
SCHEDULE

ACHIEVEMENT STANDARD 91897 USE ADVANCED PROCESSES TO DEVELOP A DIGITAL
TECHNOLOGIES OUTCOME
Programme 6: Lifestyle programming
Credits: 6

 15DTHM NCEA L2 | Teaching and learning programme 6 | Lifestyle programming

Final grades will be determined on a holistic judgment of the evidence against the achievement criteria.

CRITERIA JUDGMENTS COMMENTS

Discusses how the information
from planning, testing and
trialling of components
assisted in the development of
a high-quality outcome.

For example (partial evidence):

The student has presented a brief, reflective summary of how the information from planning,
testing and trialling of the components of their program assisted them to develop a high-
quality outcome. They provided annotated screenshots of the changes they have made
throughout the process and how feedback from the users and the testing process helped
them to refine their program. They also included screenshots of their Trello board with a
reflection on how it guided their development process and helped them to complete all the
components and keep on track with their time management.

ASSESSMENT
SCHEDULE

ACHIEVEMENT STANDARD 91897 USE ADVANCED PROCESSES TO DEVELOP A DIGITAL
TECHNOLOGIES OUTCOME
Programme 6: Lifestyle programming
Credits: 6

