[bookmark: _s9rz0py2taod]Lucky Unicorn - Planning / Testing

	You MUST provide evidence showing how the problem has been decomposed, how the components have been developed and trialled, and of how they have been assembled and tested to create a final, working outcome.

[bookmark: _q6sc1shhur7t]Outline / Decomposition
1. Ask how much money the user wants to play with (must be more / equal to $1 and less than / equal to $10)
2. Randomly generate a token (zebra, horse, unicorn or donkey). Display the token
3. Check that the house has an advantage. Adjust list to ensure that users don’t get too many unicorns.
4. Set up winnings system
a. If token is zebra or horse, subtract $0.5 from the total, set ‘amount_won’ to 50c
b. If token is unicorn, add $5 to the total, set ‘amout_won’ to $5
c. Otherwise subtract $1 from the total, set ‘amount_won’ to $0
d. State how much the user won.
i. If the amount_won is more than 0, feedback is “Congratulations, you won {amount}”
ii. Otherwise feedback is “Sorry, you did not win anything this round
e. State the new total
5. Setup end mechanics
a. If the total is more than $1.00, allow user to press ‘q’ to quit or <enter> to continue
i. If user presses <enter> generate a new token
b. If the total is less than $1.00 output farewell message and end game
[bookmark: _n5wwkcqzmysi]
[bookmark: _ndfwfjh44bxk]

[bookmark: _cpk8ihyqzhzu]Version Log
Overview…
[image:]

Initial Task Decomposition…
[image:]

Working Program Log…
[image:]

[bookmark: _tv54k8mbuy2c]Component Testing
Component 1: Test that ‘how_much’ is more than / equal to 1 and less than equal to 10.
[image:]
[image:]

Notes / Justification: I chose to test the number using an integer checking function as this can be recycled in future projects and it will make it easy to transfer this component of the program into the finished outcome. Note that we have placed a limit on the amount of money that our users can spend on a given round to limit losses (social consideration).

Component 2: Test that tokens are being randomly generated

	Test Data
	Expected

	I will press <enter> to generate tokens
	The output should be a random mix of horse, zebra, donkey and unicorn

[image:]
Notes: The code randomly generates the expected tokens but it looks like the house does not have an advantage and players will almost always walk away with more money than they spent. We need to change the odds

Component 3: Check that house has an advantage

	Test Data
	Expected

	Choose 100 tokens and calculate winnings based on list containing ….
Horse, zebra, donkey, unicorn
	Users should win roughly $50.00 (ie: puts in $100 and takes home $150.00

	Adjust list so that it contains
Horse, horse, horse
Donkey, donkey, donkey,
Zebra, zebra, zebra,
Unicorn

Then choose 100 tokens and calculate winnings
	Users should ‘win’ roughly….
$10 x 5 = 50 (unicorns)
$ 60 x 0.5 = $30 (zebra / horse)
Nothing for the 30 expected donkeys

Total is $80 so house wins $20 and has a long term advantage.

[image:]
Component 4: Test Payment System

	Test Data
	Expected

	Start amount: $10
Token set to horse
	End amount: $9.50
Feedback: “Congratulations, you won 50c”
Amount Left: “You have $9.50 to play with”

	Start amount: $10
Token set to zebra
	End amount: $9.50
Feedback: “Congratulations, you won 50c”
Amount left: “You have $9.50 to play with”

	Start amount: $10
Token set to donkey
	End amount: $9.00
Feedback: “Sorry you did not win anything this round”
Amount Left: “You have $9.00 to play with”

	Start amount: $10
Token set to unicorn
	End amount: $15.00
Feedback: “Congratulations!! You got a lucky unicorn and have won $5.00”
Amount Left: “You have $15.00 to play with”

[image:]

Component 5a: Test End Mechanics

	Test Data
	Expected

	Start amount: $2
Token: Donkey

Again? <enter>

Token: Donkey

	End amount: $1.00
Feedback: Sorry, you did not win anything this round”

<loops>

End Amount: $0.00
Feedback: Sorry, you did not win anything this round”

You have run out of money. Game Over
<ends>

	Start amount: $10
Token: Unicorn
Again: <n>

	End amount: $15.00
Feedback: “Congratulations!! You got a lucky unicorn and have won $5.00”
Amount Left: “You have $15.00 to play with”
Again: “Press enter to play another round or ‘q’ to quit

Thank you for playing

[image:]
In my final game will remove the ‘You have 0 to play with’ line as it is not needed
[bookmark: _r2mjn0x8q3w9]Assembled Game Testing

	Test Data
	Expected

	How much? xlii
How much? 2.5
How much? 0
How much? 11
How much? 1

Play until money runs out!
	The program should ask how much money I wish to spend until a valid answer is given (ie: $1.00). It should let me play until I have less than $1.00 which will probably only take one round unless I get a unicorn on the first go.

	Start with $10, play 3 rounds and then quit
	The program should generate three random tokens and it should then allow me to quit while I still have some money

[image:]
Notes / Justification: I decided to only accept money to the nearest dollar as accepting less than that would mean using a float and this would allow users to potentially put in ‘weird’ amounts like $1.30 which could make making change inconvenient. I am considering implementing a round counter and will ask my ‘usability’ volunteer for their opinion (assuming they don’t identify this as a usability issue)
[bookmark: _xn7t3g59l9cx]Usability Testing

I got my mum to try the game and below are the results...
· Mum complained that it was not clear that it cost $1 per round. The first time she ‘won’ 50c she was bitterly disappointed to see her balance drop by 50c.
· The game needs an introduction at the start clearly stating the rules and how it is played.
· During the actual game play there were no problems. My mum was able to play and *sort of* quit successfully. She thought that pushing a key (without pushing enter afterwards) would end the game.

As a result of further testing and feedback from my mum, I made the following changes…
· Changed the feedback message to make the game more honest.
· Put in introduction / payout schedule
· Made the token announcement stand out (see below, this took quite a bit of trial and error)
· My mum found it a bit tricky to easily see the token announcement in the midst of a long game. I put the ‘token announcement’ statements into the if statements (v3 of full game) and set up the statements so that unicorn is visually different to donkey and zebra / horse.
· I also implemented a round counter so that players could see how many rounds they had played.

[bookmark: _eecm6wj3zxqi]Post Usability Test…
I developed a quick function to efficiently create nicely formatted ‘token’ statements. Here is the test plan …

	Test Data
	Expected

	Item: unicorn

Item: horse

Item: zebra

Item: donkey
	Statement: ***** Congratulations! It’s a unicorn *****
Decoration: Line of stars above and below statement that is the same length as the statement.

Statement: ^^ Good try. It’s a horse. You won back 50c ^^
Decoration: as for unicorn but use “^” character instead of stars

Statement: ^^ Good try. It’s a zebra. You won back 50c ^^
Decoration: as for unicorn but use “^” character instead of stars

Statement: -- Sorry it’s a donkey. You did not win anything this round ---
Decoration: as for unicorns but use “-” character

Notes / Justification: I wanted an easy way to visually differentiate between the various tokens. I also wanted to make it easy to change the tokens / statement length without having to manually count how many characters were needed for the top / bottom line decoration. Putting the code into a function means it can be recycled for future programs and it is very easy to ‘call’ the code and change the statement and symbol.

[image:]

	Test Data
	Expected

	How much? 2

Play until money runs out!
	The program should ask how much money I wish to spend until a valid answer is given (ie: $1.00). It should let me play until I have less than $1.00. At the end of each round it should show how many rounds have been played followed by the balance

	Start with $10, play 3 rounds and then quit
	The program should generate three random tokens and it should then allow me to quit while I still have some money. It should show how many rounds have been played followed by the balance.

[image:]

[bookmark: _qq2hq0u2ie7u]Social and End User Considerations…

How did you ensure that your task was suitable for your chosen audience?
The program is suitable for a wide audience as it is easy to understand and play the game. The game has been tested for usability with the help of a volunteer and several improvements were made based on feedback received during that process. To prevent users from losing too much money, I have put a limit of $10 on the amount that can be spent in one session.
How have you honoured copyright?
There were no copyright issues for this outcome as both the code and game concept are original.
How did you make your quiz easy to use?
I ensured the quiz was easy to use by asking a volunteer to help test its usability. The final game has the following features…
· There is a clear introduction which briefly explains how the game works
· The outcome statements are visually different from each other so it is easy for users to see what they got for each round
· At the end of each round there is a statement showing how many rounds have been played and the current balance
· If users enter an invalid number for the how much money they wish to spend, there is a clear error message which asks them to enter an integer between 1 and 10
Level 6 Digital Technologies & Hangarau Matihiko
Teaching and Learning programme 1 - Planning & Programming (Python)
image4.png

image1.png

image8.png

image6.png

image10.png

image12.png

image7.png

image11.png

image5.png

image2.png

image9.png

image3.png

