[bookmark: _s9rz0py2taod]Car Racer Game
[bookmark: _q6sc1shhur7t]Outline / Decomposition
1. Write introduction and allow user to choose number of dice being used (1 or 2)
2. Allow user to choose car number and race distance. Check that car number is between 1 and 6 (or 1 and 12) and race distance is between 10 and 15	Comment by Jennifer Gottschalk: Update: I have decided to change this to 10 - 25 as a distance of 5 is too short.
3. Create ‘cars’ and then move them forward by iterating through a list of numbers and 6. (test using 20 steps)
4. Replace hard coded numbers in step 3 with random numbers and check that outcome still works
5. Set up basic race (10 steps) and state which car won (and number of die rolls needed).
6. Add to basic race to state which car came second and which car came third
7. Binned component 6 and developed a more efficient version of the code - it does the same thing but has fewer functions and is ‘cleaner’ <added during development of outcome>
8. For two dice race, generate two numbers between 1 and 6 and add them together to decide which car goes forward.
9. Let user choose number of dice to be used
10. Allow user to choose car and number of rounds
11. Implement scores (user gets 5 points if they win, 3 if they come second, 1 if they come third). Keep score for each round.
12. Allow user to reset game and start over or quit if desired.
[bookmark: _cpk8ihyqzhzu]Version Log
[image:]
[bookmark: _2ju6we1hlt46]
[bookmark: _u6qcivdb79e6]

[bookmark: _tv54k8mbuy2c]Component Testing
1. [bookmark: _w9ovgpapkco1]Number of Dice

[bookmark: _w0q00tgjh6v4]To check that num_dice is an integer that is more than (or equal to) 1 and less than (or equal to) 2
[image:]
[image:]

2. [bookmark: _63owmkxa67bq]Get User Input (car # and distance)
Notes / Justification: I will recycle the code developed in this component ‘as is’ so have provided testing to show that the number checking function has been correctly called for each case.

[bookmark: _xdhkph348e5a]To check that car_num is an integer that is more than (or equal to) 1 and less than (or equal to) 6 <one die>
[image:]

[image:]

[bookmark: _23sgjvizgb1h]To check that car_num is an integer that is more than (or equal to) 1 and less than (or equal to) 12 <2 dice>[image:]
[image:]
[bookmark: _6txt1ag5jg7t]To check that distance is an integer that is more than (or equal to) 5 and less than (or equal to) 15
[image:]
[image:]

3. [bookmark: _6g3rl4p0ysg]Race cars (1 die) over 20 steps <hard coded values>

	Test Data
	Expected

	I will use the following numbers to race the cars
[1,1,1,2,2,2,2,3,3,3,3,3,4, 4, 5, 5, 5, 6, 6, 6]
	The car which has the most number of tosses after 20 ‘throws’ should be reported as the winner. Ie: car # 3 should win

[image:]

Notes: Output shows results of tosses and we can see that car 3 has the most items after it and thus car 3 wins the race.

4. [bookmark: _ifrobqxjo6w2]Race cars (1 die) over 20 steps <random values>

	Test Data
	Expected

	I will generate 20 random numbers between 1 and 6 and use these to race the cars. I will repeat the test three times to check that the same car does not win every time.
	The car which has the most number of tosses after 20 ‘throws’ should be reported as the winner. In the three rounds, we should get a different winner for at least two of the rounds...

[image:]

5. [bookmark: _ud8hyxx64vl5]Race cars (1 die) - winner is the first with 10 steps

	Test Data
	Expected

	I will generate random numbers and advance the cars until one of the cars has advanced 10 steps.
	The car that has advanced 10 steps will be the winner, the ‘time’ will be the total number of steps / ‘die throws’ needed.

[image:]
Note: In the screenshot above, car #4 has ten 4’s after it making it the winner. A total of 40 throws were needed (this can be confirmed by manually counting the numbers after each car.
[bookmark: _8nf28wefjxi9]
[bookmark: _9hafe5cjp4t3]
[bookmark: _fz07tq5pmm7t]6 & 7. Find 2nd and 3rd place cars for 10 steps, 1 die

	Test Data
	Expected

	Distance: 10
Generate random numbers and advance cars until a winner is found
Edit winner label to ‘1st’
Generate another set of random numbers to advance remaining cars
Edit second place car to ‘2nd’
Generate a final set of random numbers to advance remaining cars
	Program should state which car won and then replace the label with one which says * 1st *. This process should be repeated for the 2nd placed car. The program should loop one final time and state the number of the third place winner. For each statement, the program should state how many throws were needed. The accuracy of this can be confirmed by counting the number of ‘o’s’ in the diagram and then adding ‘10’ for the 1st and 2nd place winner.

Notes: Version 6 of the program includes several (unnecessary) functions and is, bluntly put, horrible inefficient. I decided to ‘bin’ most of the code and developed version 7 which combines most of the functions and calls the major ‘race’ function three times. The result is cleaner code which works well. One big difference is that the winning car is immediately shown as can be seen in the testing screenshots below.
[image:]
[bookmark: _9jevdqmfqioo]
[bookmark: _ito4qppt25pf]8. Two dice…

	Test Case
	Expected

	Run program once pressing <enter> when prompted.
	Program should show race for 2 dice. I’d expect cars 6, 7, and 8 to win / place most of the time

	Hard code dice to choose between 10, 11 and 12 to check that output is correct for double digit numbers. Note that for car 11 / 12 to place would be extremely unlikely!
	Program should still work showing car 10, 11 and 12 winning / placing.

Notes: To get two dice to work I needed to change how the cars were generated and also change the ‘target’ when creating the place labels. This involved an ‘if’ statement where for single digit carsa space was added between the # and the car number when the cars were generated.

Test Case 1:

[image:]
Test Case 2
[image:]
[bookmark: _veshlh8z05wi]9. Allow user to choose # of Dice

	Test Case
	Expected

	Dice: 2
	Program should show race involves 12 cars

	Dice: 1
	Program should show race involving only one car

[image:]

[image:]
[bookmark: _cy9pvrmwah9o]10. Choose # or rounds and car (or each round)

	Test Case
	Expected

	Dice: 1
Rounds: 3

Car (round 1): 7
Car (round 1): 3
Car (round 2): 3
Car (round 3): 3
	Game should go for three rounds. It should not allow me to choose car #7 as we are only using a single die. If my car wins (or places), it should congratulate me.

[image:]
[bookmark: _9274wouzh3ih]11. Keeping Score…

	Test Case
	Expected

	Dice: 1
Rounds: 5

Car (round 1): 3
Car (round 2): 3
Car (round 3): 3

	Game should go for five rounds. It should keep score and update the score at the end of each round. A win is worth 5 points, second is 3 points and third is 1 point.

At the end of the game, it should state the final score.

	Dice: 2
Rounds: 3
Car (round 1): 7
Car (round 2): 7
Car (round 3): 7
	Game should go for three rounds and involve 12 cards. If I choose car 7 each time, I have a good chance of getting a decent score...

One Die:
[image:]
Two Dice (shows key parts of output only):
[image:]
[bookmark: _bmj3qgrp6rl5]12. Allow users to play more than one game

	Test Case
	Expected Value

	Dice: 1
Rounds: 1
Car: 3

Again? <enter>

Dice: 2
Rounds; 1
Car: 7

Again? <n>
	First game should be one round with one die.

<loops>

Second game should be one round with two dice.

<ends>

[image:]
Notes / Justification: The output for each game / round is quite lengthy if we ask users to push <enter> to find out which car is placed first, second and third. Whilst this does add to the thrill of the game I am wondering whether it would be better to simply output the results once (ie: when the cars race, just show who came 1st, 2nd and 3rd straight away). I will ask my usability volunteer to play the current version of the game and see if they like having to push enter to see how things play out…

Update: Showing the 1st, 2nd and 3rd place diagrams was not a problem - especially once clearer headings were implemented. If I had more time, I would consider editing the game so that it only showed the second / third place diagrams if necessary. Ie: if the user won the game, it would proceed to the next round. If they game second, the third round would not be shown. This is a ‘nice to have’ and showing 1st, 2nd and 3rd does not adversely affect the game playing experience.
[bookmark: _r2mjn0x8q3w9]Assembled Outcome Testing
See above - the game is basically complete by component 12. The only things missing are instructions at the start and a nice summary at the end. I also need to improve my user feedback so that it stands out. I will do this and then usability test...
[bookmark: _zfi1soknew04]
[bookmark: _xn7t3g59l9cx]Usability Testing

· Volunteer was initially not sure which car to choose / what to do when asked to choose a car (needs to say choose a car between 1 and 6 / 12)
· It is not clear how cars progress. Volunteer was surprised that for 2 dice, car 1 did not go anywhere.
· Volunteer suggested having a maximum number of rounds. I decided not to implement this as most users will choose a sensible number of rounds.
· It was not really clear when a new game had started. Need better headings!

· Interestingly my volunteer did not attempt to put in any invalid answers so none of the error messages were triggered.
[bookmark: _eecm6wj3zxqi]Post Usability Testing…
Notes / Justification: In addition to improving the headings in the program, at the end of each game there is a ‘Game Summary’ (similar to what we did in the ‘higher / lower’ game). This helps users see the outcome of the complete game and also makes it clear where one game ends and a new one *potentially* begins. The heading for the first game when the program is launched is different to the heading for subsequent games.

	Test Case
	Expected Value

	Dice: 1
Rounds: 2
Car: 3

Again? <enter>

Dice: 2
Rounds; 3
Car: 7

Again? <n>
	First game should be two rounds with one die. Output should be clearly shown with a summary at the end. Initially the options for one / two dice should be displayed

<loops>

Second game should be three rounds with two dice. This time around at the start of the game there is no need for the detailed explanation about how the game works if one / two dice are chosen.

<ends>

I have only shown key points in my evidence below as the prior testing has confirmed that the game is robust and works as expected.

First Game…

[image:]

Second Game[image:]
[bookmark: _qq2hq0u2ie7u]Social and End User Considerations…

How did you ensure that your task was suitable for your chosen audience?
The task is easy to use and is suitable for a wide range of users (both genders, ages 3 and up). There are clear messages and all that is involved is choosing parameters and a car. Not much can go wrong.
How have you honoured copyright?
No material from external sources was used so copyright was not an issue.
How did you make your quiz easy to use?
I tested the outcome by asking a volunteer who had not used the program before to play the game. Whilst playing she told me when things were confusing or unclear and suggested improvements. These have been listed above and the final program has acted on the feedback from my volunteer.
In addition to features suggested by my volunteer, I also implemented the following to make the program easy to use…
· if users don’t enter valid responses, they see a clear error message detailing their valid options. I have been careful to write a clear, introduction and have formatted the output so that it is easy to see where rounds (and games) start and end.
· The first time the program is run, there is detailed information on how it works which shows explains the difference between the ‘one die / two dice’ option. On subsequent games, this extra information is not needed so it is not displayed.
Level 6 Digital Technologies & Hangarau Matihiko
Teaching and Learning programme 1 - Planning & Programming (Python)
image12.png

image22.png

image5.png

image4.png

image21.png

image19.png

image20.png

image9.png

image6.png

image7.png

image17.png

image8.png

image23.png

image16.png

image13.png

image11.png

image3.png

image14.png

image10.png

image18.png

image15.png

image2.png

image1.png

