The original diagram

Applying the algorithm

The starting node is A and has label 0. From A we can reach B, C, and D.

- The distance of B from A is 4 .
- The distance of C from A is 3.
- The distance of D from A is 7 .
$B(4), C(3)$ and $D(7)$ are labelled with these temporary distances in brackets.

The edges considered are marked in blue.
As the shortest of these lengths is 3, we now confirm C as having mimimum distance of 3 from A, and edge AC as part of a possible path. Colour this edge red.
See these changes in the next diagram.
Now look at vertices we can reach from C, which are D and E (marked by blue edges).
The distance of D from A is 7, which is the current temporary label of D.
The distance of D from C along edge $C D$ is 3 . As $3+3=6$ (permanent label of C plus weight of edge CD, or distance of D from A via C), which is less than 7 (current
 temporary label of D), we change the label of D to be 6 . E gets a temporary label of 8 (3+5).
The shortest of the three temporary labels (for B, D and E) is 4 , so we can now confirm B, give it a permanent label of 4, and colour edge $A B$ red (as it was the edge used to get to B). All blue edges now become green.

New Zealand curriculum guides senior secondary: Mathematics and statistics
(C) Ministry of Education 2011 - copying restricted to use in the New Zealand education sector

We now look at the vertices we can reach from B. The edges considered are marked blue.
F can be reached from B with a total distance from A of $4+4=8$, and so gets temporary label 8.
D can be reached from B along edge BC with weight of 1. The shortest total distance from A to D is now $5(4+1)$ so D gets a temporary label of 5 .
The vertex with the smallest temporary label (out of D, E, and F) is now D, so D is confirmed.
Any blue edges left become green.

We now look at the nodes we can reach from D. The edges considered are marked in blue.
E can be reached from D and now has a shortest distance from A of $5+2=7$ (along edge DE), so gets a temporary label of 7 .
G can be reached from D. The temporary distance of G is now $5+7$ or 12 .
We label $E(7)$ and $G(12)$.
The smallest temporary label is now 7 for vertex E, so E is confirmed.
Edge DE becomes red (last edge used to give E its label).
We now look for vertices we can reach from E that have not got permanent labels.
In this case, this is only G, so G now gets a new temporary label of $9(7+2)$.
The smallest temporary label is now F at 8 .
F is confirmed. Make edge $B F$ red.

New Zealand curriculum guides senior secondary: Mathematics and statistics
© Ministry of Education 2011 - copying restricted to use in the New Zealand education sector
$27 / 3 / 12$
We now look at the vertices
we can get to from F that do
not have permanent labels,
which is only G .
G has a temporary label of 9,
which is smaller than 12
(8+4), so G is now confirmed
(as it is the only vertex left)
and gets a permanent label
of 9.
We have found the shortest
distance from A to G, which
is 9 km.
Make edge EG red (how G
got its label of 9).

New Zealand curriculum guides senior secondary: Mathematics and statistics
(c) Ministry of Education 2011 - copying restricted to use in the New Zealand education sector

