1. We start from A and draw the tree formed by the edges we can reach from A. The nodes are labelled with the distance from A.
(3)
2. The next step is to extend the trees to all the nodes we can reach from B, C, and D, and label them with the distances from A.

- From B: $F(4+4=8)$ and $D(4+1=5)$
- From $\mathrm{D}: \mathrm{G}(7+7=14)$ and $\mathrm{E}(7+2=$ 9)
- From $\mathrm{C}: \mathrm{D}(3+3=6)$ and $\mathrm{E}(3+5=9)$

3. In this new column of nodes, D and E appear twice.

- We only need the one with the shortest distance from A, so we delete $\mathrm{D}(6)$ and $\mathrm{E}(9)$. (You could just cross them out rather than deleting them.)

4. Next extend the tree from F, D, and E in the same way. G is the finishing point so that branch is not extended.

The shortest distance from A to G is 9, and the path is ABDEG.
Students should be encouraged to draw the trees step by step to clearly
communicate their thinking.

New Zealand curriculum guides senior secondary: Mathematics and statistics
© Ministry of Education 2011 - copying restricted to use in the New Zealand education sector 27/3/12

