
''' Comment
your code '''

Comment your code

Comments

multi-line comment

single line comment

Python Basics

Variables

Output

Escape Sequences

Variables are containers that store values. When naming variables
remember the ‘no caps, no gaps’ rule.

Use a single ‘=’ to assign a value to a variable.

There are several ways to output data. One of the most
convenient is to use the format method. The {} are place holders
which are filled by the variables in the .format() part of the code.

We can format numbers to 2dp by using {:.2f} as follows...

Operators

Comparing Values...

If / elif / else <decisions>

To compare values, use the following symbols. Note the double
‘==’ that is used to find out if a variable is the same as another
variable.

Use an ‘if ’ block to make decisions. Note that if the first condition
is not met, Python will look at the second condition and so on.
Here’s an example (note the colons and indenting)...

Here is another example...

== equal to != not equal to
> more than >= more than or equal to
< less than <= less than or equal to

Use the above when creating while loops and if statements.

While Loops
Loop code while a condition is met. Everything that is indented is
part of the loop.

Make sure that there is a way for the loop to end. Usually this
involves updating a counter or asking for user input (similar to the
example above).

For Loops
Loop code a certain number of times. Useful for iterating through
the values in a list.

String Methods
Here are some useful string methods.

len(string) Gives the length of a string
lower() Converts string to lowercase
upper() Converts string to uppercase
title() Makes first letter of each word uppercase
replace(old,new,
[max])

Replaces ‘old’ character in string with ‘new’
character. Can limit this to a maximum
number of replacements

isdigit() Can be used to check if string contains
numbers only

The above is just a taste of the available methods. Please google /
see the Python documentation for more information.

To split code over multiple lines, use the \ character

\n new line \t tab
\' single quote \" double quote

Common Errors

NameError Variable name spelled incorrectly
EOL while scan-
ning literal

Missing quotes at beginning / end of a
string

Invalid Syntax Missing colon / using ‘=’ instead of ‘==’

Note: words which are in orange / purple are ‘reserved’ and errors
will result if you try and use those words as variable names.

If you get a syntax error, try looking both at the line that has been
identified and the line directly before it. Often the error is in the
preceding line of code.

Data Validation (Try / Except)
Useful for making sure unexpected input does not cause your
program to crash. Note the indents!

Number Operations

round(x[, n]) rounds a number to n digits. Defaults to
0dp if n not specified

abs(x) makes ‘x’ positive
int(x) makes ‘x’ an integer
float(x) makes ‘x’ a float
pow(x,y) ‘x’ to the power ‘y’

Lists
Lists can be created as follows...

Each item in a list is assigned a number based on its position in
the list (starting with 0). Below are some methods that we can
apply to a list...

List items can be lists (giving us a table-like structure)

Functions

Python Short Hand
We often need to increase / decrease counters. Here is the short
hand...

The number to the right of the equals does not have to be one.
This shorthand also works for multiplication.

increase by 1 count+=1
decrease by 1 count-=1

Random Stuff!
Below is some code you can use to generate random integers and
choose random items from a list.

Functions allow us to reuse code and often result in programs
which are easy to read and modify.

Functions ALWAYS go befor the main routine. They must include
a ‘return’ statement. They can return either a single variable or a
list. Here’s how to define and then call a function.

