[bookmark: _s9rz0py2taod]Collect Them All
[bookmark: _q6sc1shhur7t]Outline / Decomposition
1. Set up list with the target word (in this case ‘coffee’)
2. Choose a letter (one of ‘c’, ‘o’, ‘f’, ‘e’). Keep track of how many letters have been chosen
3. If a chosen letter is in the list, remove the letter from the list
4. When the list is empty, the word has been spelled out - state how many beverages were purchased to spell out the word
	Comment by Jennifer Gottschalk: Done in component 3
To Generalise
5. Ask user for target word / number of items (word should be longer than one character)
6. If users have a number of items, set up list to include one number for each item (eg :if six items chosen, list should have numbers 1 - 6)
7. If users have chosen a word, set up list with target letters (no duplicate letters should be included in the list)
8. If user chose a target word, set up list with target word
9. If they chose a number of items, use random.randint to randomly generate a number each time (this is more efficient than populating a list of the required numbers).
10. Display items purchased and number of items needed to collect the entire set
11. Ask user for price per purchase (must be a number more than 0) and ask user how many trials (must be an integer more than 0)
12. Run multiple trials and record number of ‘purchases’ required for each trial, output number of trials and cost
13. Output highest, lowest and average # (and cost) for number of trials requested
[bookmark: _cpk8ihyqzhzu]Version Log
Your version log should go here. Annotated screenshots are a good idea at this point
[bookmark: _tv54k8mbuy2c]Component Testing
1. [bookmark: _jlo7jqbubb67]Set up list with the target word (in this case ‘coffee’)
Note: I set up the program so that it works on a given word and creates a list of letters which does not include duplicates. This should make it easier to generalise the program later.

	Test Data
	Expected

	Use word ‘coffee’ to create list
	List should include letters ‘c’, ‘o’, ‘f’, ‘e’, (no duplicates)

[image:]
[bookmark: _ue7gyfav5e26]2. Choose a letter (one of ‘c’, ‘o’, ‘f’, ‘e’). Keep track of how many letters have been chosen

	Test Data
	Expected

	Randomly choose 10 letters and keep count of number of letters chosen.
	Program should print out random mix of letters ‘c’, ‘o’, ‘f’, and ‘e’ and should report that the total is 10.

[image:]

[bookmark: _8mbmco545396]3. If a chosen letter is in the list, remove the letter from the list

	Test Data
	Expected

	Choose letters at random until all letters in word selected. Each time a letter in the word is selected, remove it from the list. Stop when the list is empty
	Program should show random letter being selected and then removed from list. List will be outputted each time. Program should end when list is empty (total should be outputted so we can see how many letters were selected)

[bookmark: _w8fbs3atnvfn][image:]
[bookmark: _oun43c6ox018]
[bookmark: _5ri3v31eusmb]5 - 7. Ask user for target word / number of items (word should be longer than one character)

Notes: The program allows users to enter either short words (15 characters or less) or an integer between 2 and 40. This was a somewhat arbitrary decision but anything more than 40 is probably excessive. The limit of 40 is based on the ‘little shop’, ‘New World’ competition. This simulation assumes that each item has an equal chance of being chosen but in words where there are duplicate letters, the proportions are ‘out’ <on purpose>. This could be adjusted if necessary (see comments in code).

	Test Data
	Expected

	Input word / # of items: 1
	Please enter an integer between 2 and 40

	Input word / # of items: 2
	Item list = [1, 2]

	Input word / # of items: xlii
	Items list = [‘x’, ‘l’, ‘i’]

	Input word / # of items: a
	Please enter a word that is more than one character long

	Input word / # of items: 2.5
	Please choose an integer between 2 and 40

	Input word / # of items: 40
	Items list includes numbers 2 - 40

	Input word / # of items: 41
	Please choose an integer between 2 and 40

	Input word / # of items: “mischievousness”
	Item list includes each letter of the word mischievousness (15 letters long)

	Input word / # of items: “counterintuitive”
	The word you chose is 16 letters long, please choose a word that has 15 (or less) characters.

[image:]
Note in the screenshot above, my ‘short list’ does not contain any duplicate letters (component 6)

[bookmark: _m17664sfkwyh]8 - 9: Set up structures to allow program to count (and record) number of purchases required to get a given set.

Note: There are a number of ways of approaching this problem. I have opted to create lists which include all the required items and then remove items as they are ‘bought’. When the items list is empty, we will be able to state how many purchases were needed to get all of the items. If our items were numbers only (and not words), I would have approached the problem differently. Creating a list of target numbers is not necessarily efficient but once done this approach lets me use the same function / commands to see if the items have been collected (regardless of whether the items in question are numbers or letters).

	Test Data
	Expected

	Items: “coffee”
	Target List: “c”, “o”, “f”, “f”, “e”, “e”
Choice List: “c”,”o”, “f, “e”

	Items: 7
	Target List: 1, 2, 3, 4, 5, 6, 7
Choice List: 1, 2, 3, 4, 5, 6, 7

[image:]
[bookmark: _jpj2wm5cwkjn]15. Display items purchased and number of items needed to collect the entire set

	Test Data
	Expected

	Items: Coffee
	Program should show list of choices which includes at least 1 ‘c’, 1 ‘o’, 2 e’s and 2 f’s. It should state how many ‘purchases’ were needed to collect the set

	Items: 7
	Program should show list of choices which includes at least 1 of each number (1 - 7) and it should state how many numbers were needed to collect the set.

[image:]
[bookmark: _9jvne0j7ldwz]11. Ask user for price per purchase (must be a number more than 0) and number of trials (must be an integer more than 0)

Note: I have created a number checking function for this section that tests for a lower bound. Normally I’d use a single function to check ‘number of items’, price and number of trials but in this case, ‘number of items’ could also be a target word and trying to accommodate target words in a ‘universal’ number checking function is unnecessarily complex.

[image:]
[image:]
[image:]
[image:]

[bookmark: _rr7ca841t6se]12. Run multiple trials and record number of ‘purchases’ required for each trial, output number of trials and cost

	Test Data
	Expected

	Items: Coffee
Price? $2
Trials? 5
	The program should generate 5 trials and should list the outcome for each trial (5 lists).

At the end of the lists it should provide a summary stating the number of items needed and the cost for each trial.

[image:]

[bookmark: _ikahouqwkke3]13: Output highest, lowest and average # (and cost) for number of trials requested

Notes: I developed this component in two steps. The first step was hard code in a list and find the highest, lowest and average number from that list. Once that was working, I added the cost to it’s own list and then used my code from component 13a to find the lowest, highest and average price.

	Test Data (Component 13a)
	Expected

	List: [1, 5, 3, 7, 2, 4, 6]
	Lowest: 1
Highest: 7
Average: 4

[image:]

	Test Data (Component 13b)
	Expected

	Items: Coffee
Price? $2
Trials? 5
	The program should generate 5 trials and should list the outcome for each trial (5 lists).

At the end of the lists it should provide a summary stating the number of items needed and the cost for each trial. It should then show the lowest, highest and average price

[image:]
[bookmark: _r2mjn0x8q3w9]Assembled Outcome Testing
My assembled outcome is essentially component 13. All I have added is a brief introduction and the ability for users to do multiple ‘runs’ if desired.

	Test Data (Component 13b)
	Expected

	Items: Coffee
Price? $2
Trials? 5

Again? <enter>

Items: 7
Price: 1
Trials: 3

Again? <n>
	The program should generate 5 trials and should list the outcome for each trial (5 lists).

At the end of the lists it should provide a summary stating the number of items needed and the cost for each trial. It should then show the lowest, highest and average price

<loops>

Program runs a second time, this time each trial should include the numbers 1 - 7 at least once to make a set.

<ends>
“Thank you for using this program. Have a great day”

[image:]
[bookmark: _xn7t3g59l9cx]Usability Testing
I asked one of the Mathematics teachers at my school to use my program and recorded the session to identify any usability issues. The assembled program was easy for the teacher to use and she liked the fact that it quickly ran multiple trials (something that would take a long time to do manually). When she ran the program twice through (once with 20 trials and once with 100 trials) it worked correctly but she found it a bit hard to scroll all the way back up to the top of the window to be able to compare the average spent. To remedy this, I need to make the statistics box really stand out so that it is easy to find when scrolling.
[bookmark: _eecm6wj3zxqi]Post Usability Test…

My post usability program is identical to the pre-usability version except for a few extra ‘print; lines around the statistics area. Here is a screenshot showing the ‘before’ and ‘after’ output.
[image:]
[bookmark: _qq2hq0u2ie7u]Social and End User Considerations…

How did you ensure that your task was suitable for your chosen audience?
I put in precise, easy to understand instructions for users. If they enter invalid data, the error message tells them what data was expected. I tested the tool on a Mathematics teacher (who asked for a copy so she could use it with her classes!). The output is now easy to read and my volunteer found the program usable and useful.
How have you honoured copyright?
I developed the code myself and did not use any external material so copyright was not an issue.
How did you make your program easy to use?
My program has…
· A clear introduction / instructions
· Easy to understand questions to gather user input
· Error message which tell the user what is expected if unexpected data is inputted
· Clear output where the statistics summary has been emphasised to make it easy to find if a user scrolls through the output
Level 6 Digital Technologies & Hangarau Matihiko
Teaching and Learning programme 1 - Planning & Programming (Python)
image4.png

image10.png

image7.png

image11.png

image8.png

image13.png

image9.png

image12.png

image6.png

image14.png

image15.png

image2.png

image3.png

image1.png

image5.png

