
DIGITAL TECHNOLOGIES & HANGARAU MATIHIKO

Planning & Programming (Python)

Teaching and
learning programme

Level 6 – New Zealand Curriculum

Developed by Jennifer Gottschalk, Whangaparaoa
College, 2018

External links to websites
The Ministry of Education does not accept any liability
for the accuracy of information on external websites, nor
for the accuracy or content of any third-party website
accessed via a hyperlink from this resource. Links to
other websites should not be taken as endorsement of
those sites or of products offered on those sites. Some
websites have dynamic content, and we cannot accept
liability for the content that is displayed.

Published 2018 by the Ministry of Education
PO Box 1666, Wellington 6011, New Zealand

www.education.govt.nz
All rights reserved
Copyright © Crown 2018

 1Teaching and learning programme 1 | Planning & Programming (Python)

By the end of this teaching and
learning programme, students will be
able to:

•	 decompose a problem into smaller sub-
problems

•	 create and test code that solves each
problem

•	 combine the code into a fully functional
program

•	 test that the program is easy to use.

Duration

Teachers should adjust this programme to
suit their students and timetables. One credit
equates to 10 notional hours of teaching,
practice and/or study, and assessment.

Key teaching and learning concepts –
the big ideas

•	 A problem can be decomposed into smaller
sub-problems

•	 Each sub-problem can be developed and
tested

•	 The code fragments can then be composed
into a fully functional program

•	 Testing should include boundary and
unexpected values

•	 Functions can be used to avoid repeating
code

•	 Usability is important! Volunteers can be
asked to test code and changes can then
be made to ensure that the final outcome is
easy to use.

Summary of the teaching and learning programme

This programme is based around an eBook tutorial which includes embedded video. Students
are given several problems related to games of chance and are encouraged to develop
programs to solve the problems. No prior programming knowledge is assumed.

Alignment to NZC and/or
Te Marautanga – (DTHM progress
outcomes and progressions)

This material is focused on the designing and
developing digital outcomes progression.
Students will:

•	 design and develop a basic program

•	 ensure that their outcomes are easy to use
(preferably by including some usability
testing as part of the process)

•	 be ethical when it comes to designing and
creating their outcome (specifically they will
honour copyright.)

•	 meet the criteria set out in achievement
standards 91883 and 91884.

Links to other learning areas

This programme involves documenting three
books that students have read and could be
used in conjunction with English achievement
standard 90854.

Teaching and learning pedagogy

The programme uses ‘flipped’ learning,
where the process has been videoed and
students are encouraged to create their own
programs by following the video tutorials.
They are also encouraged to go beyond the
basics where possible. By using an eBook
with video, teachers are free to work with
individuals and troubleshoot in a way that
would not be possible using more traditional
methods. Teachers could encourage students
to collaborate and work in small groups during
the learning phase for this standard.

 2Teaching and learning programme 1 | Planning & Programming (Python)

Prior knowledge and place in
learning journey

No prior knowledge is assumed. If students
have programmed before, this programme will
help formalise their learning and also ensure
that they develop good coding (and design)
habits.

Resources required

•	 The learning resource for this programme
found in the ePub and support files. Note
that this includes ‘teacher only’ answers and
a Teaching Guide. All of the resources are
found here.

•	 Python

•	 Google Documents / Word

Software used:

•	 Python 3.x

•	 Pycharm (optional but very useful).

How you might adapt this in your
classroom

The tasks in the support files can be
modified to suit a given class. Each task
has suggestions for extension activities, and
students should be encouraged to go beyond
the basics if they have prior programming
experience. While the resource is focused
on Python programs, students could be
encouraged to develop similar outcomes in the
language of their choice.

Assessment

There is an assessment task included at the
back of this programme. The default task asks
students to create a mathematics quiz.

 3Teaching and learning programme 1 | Planning & Programming (Python)

Teaching and learning programme

What is being
covered

Approximate
duration

Specific learning outcomes
Students will be able to:

Learning activities Checkpoints

The basics 5 hours
maximum

•	 name variables

•	 get user input

•	 loop code

•	 cope with unexpected input

•	 write functions.

•	 Discuss the importance of commenting code

•	 Learn how to name variables correctly

•	 Learn how to get user input and the
difference between strings and integers

•	 Learn how to write ‘if’ statements and use <,
>, ==, etc.

•	 Learn how to write ‘while’ loops

•	 Learn how to implement try or except code

•	 Combine what we have learned to create a
number checker

•	 Change our number checking code into a
function

None

TERM OUTLINE

Week 1 Weeks 2 & 3 Weeks 4 & 5 Weeks 6 & 7 Weeks 8 & 9 Weeks 10 & 11 Weeks 12 & 13
The basics Lucky unicorn game Higher/lower game Rock, paper, scissors Collect them all Car racer game Assessment

Resources – The material below is used for each task:
•	 ePub
•	 Support files
•	 Documentation template
•	 Program planning helper

 4Teaching and learning programme 1 | Planning & Programming (Python)

What is being
covered

Approximate
duration

Specific learning outcomes
Students will be able to:

Learning activities Checkpoints

Lucky unicorn
game

10 hours •	 break down the task

•	 code and test each section

•	 create a fully working program
from the components

•	 test that the program is
usable.

•	 Analyse the ‘Lucky unicorn’ problem and break
it down into a series of smaller components

•	 Create test plans for each component (note
that this can be done at the start of the task or
test plans can be generated before creating a
given component)

•	 Learn how to create ‘for’ loops (ie, ‘Loop
Interlude’)

•	 Randomly choose items from a list

•	 Check that the probability of getting a unicorn
is not too high

•	 Set up payment mechanics

•	 Set up end-game mechanics

•	 Combine all the sub-programs into a fully
functioning program

•	 Test the usability of the program

•	 Fix the output statements so they are easy to
read

•	 Retest that the program works correctly.

Checkpoint 1:

Submit the entire ‘Lucky
unicorn’ program and the
associated documentation
for feedback. The program
may well be different to
the one in the video walk-
through.

Higher/lower
game

10 hours •	 break down the task

•	 code and test each section

•	 create a fully working program
from the components

•	 test that the program is
usable.

•	 Decompose the problem and create test plans
for the various components (note that test
plans can be created at a later date if preferred,
as long as they are generated before the code
for that section is written)

•	 Create the game by using what you learned
in ‘Lucky unicorn’ and following the provided
videos for ‘new’ code

•	 If possible, create a fully featured game rather
than a basic version.

Checkpoint 2:

Submit the entire ‘Higher/
lower’ program and the
associated documentation
for feedback. The program
may well be different from
the one in the video walk-
through.

 5Teaching and learning programme 1 | Planning & Programming (Python)

What is being
covered

Approximate
duration

Specific learning outcomes
Students will be able to:

Learning activities Checkpoints

Rock, paper,
scissors

10 hours
maximum

•	 break down the task

•	 code and test each section

•	 create a fully working program
from the components

•	 test that the program is
usable.

•	 Decompose the problem and create test plans
for the various components (note that test
plans can be created at a later date if preferred,
as long as they are generated before the code
for that section is written)

•	 Create the game by using what you have
learned in previous tasks

•	 If possible, make the game your own. Consider
how you’d like the scoring to work (eg: best of
x or the first to x).

Teacher note: Students should be able to
compare user and computer choice using five ‘if’
statements. If they want to use more than that,
encourage them to think about how they can do
it in less. Using more statements is OK and will
work but it is inefficient and probably indicates
that the student is working at an A level.

Checkpoint 3:

Submit the entire ‘Rock,
paper, scissors’ program
and the associated
documentation for
feedback.

Collect them all 10 hours
maximum

•	 break down the task

•	 code and test each section

•	 create a fully working program
from the components

•	 test that the program is
usable.

•	 Decompose the problem and create test plans
for the various components (note that test
plans can be created at a later date if preferred,
as long as they are generated before the code
for that section is written)

•	 Create the tool by using what you learned in
previous tasks. It is OK to recycle or repurpose
functions that you have used in previous tasks.

Checkpoint 4:

Submit ‘Collect them
all’ and the associated
documentation for
feedback.

 6Teaching and learning programme 1 | Planning & Programming (Python)

What is being
covered

Approximate
duration

Specific learning outcomes
Students will be able to:

Learning activities Checkpoints

Car racer game 10 hours
maximum

•	 break down the task

•	 code and test each section

•	 create a fully working program
from the components

•	 test that the program is
usable.

•	 Decompose the problem and create test plans
for the various components (note that test
plans can be created at a later date if preferred,
as long as they are generated before the code
for that section is written)

•	 Create the game by using what you learned in
previous tasks. It is OK to recycle or repurpose
functions that you have used in previous tasks.

Teacher Note: There are a wide number of
possible correct solutions to this task. Students
could be encouraged to use the turtle module and
race turtles instead of cars. This entire exercise
is an extension task, and if students don’t get
this far, that is not a problem. This is really an
opportunity for students to explore. The solution
uses 2-dimensional arrays and this is not required
at level 1. Very top students might need to know
that functions can only return one thing but that
thing can be a list.

Checkpoint 5:

Submit your ‘Car racer’
game and the associated
documentation for
feedback.

Assessment
activity

10 hours The recommendation is to give students two weeks of class time.

 7Teaching and learning programme 1 | Planning & Programming (Python)

ASSESSMENT TASK

OVERVIEW

You are going to develop a basic quiz program that can be used with a chosen audience.

This assessment activity requires you to plan, trial, test and develop the quiz program. You will need to manage the development by decomposing the
program into smaller components. You will also need to trial each component and develop your program in an iterative manner. It is important to test
your program and provide evidence that it functions as intended. Finally you need to describe and address the relevant implications.

Please be aware that NZQA have read the assessment task but it will still need to be checked by the teacher using the assessment to ensure it meets all
requirements.

HOW WILL YOU BE ASSESSED?

You will be assessed on how effectively you plan your development, decompose the problem into smaller components, trial these components, and test
and refine your program so that it is a high-quality response to the task (eg, well-structured, logical, flexible, robust and comprehensively tested).

When planning and developing your program, you must ensure that it uses:

•	 variables storing at least two types of data (e.g. numeric, text, Boolean)

•	 sequence, selection and iteration control structures

•	 input from a user, sensors or another external source

and one or more of:

•	 data stored in collections (e.g. lists, arrays, dictionaries)

•	 user-defined methods, functions or procedures.

You must use conventions for the programming language and code commenting that describes code function and behaviour. Your program should be
comprehensively tested and debugged in an organised manner.

TASK

Your quiz can be on the topic of your choice provided that the questions you ask do not break copyright and are suitable for your chosen audience
(ie, not too easy and not too hard).

You can make any of the following:

•	 a maths quiz (recommended) • a multiple choice quiz
•	 a word answer quiz • a multi-player quiz
•	 a game format quiz • any other style of quiz.

Achievement standard: 	 91883 and 91884
Standard title: 	 Develop a computer program (4 credits)
	 Use basic iterative processes to develop a digital outcome (6 credits)
Total credits: 	 10

 8Teaching and learning programme 1 | Planning & Programming (Python)

ASSESSMENT TASK

TASK

You need to think about:

•	 Who your quiz is aimed at
•	 What user inputs you will need
•	 How the questions and answers will be stored
•	 How you will give feedback to the user
•	 Describing and addressing the relevant implications.

Planning:

You must:

•	 Plan how you will develop your quiz by decomposing the problem into smaller or sub-components
•	 Create a test plan that allows you to confirm that your program works for expected and relevant boundary cases.

Developing and testing:

You must:

•	 Try various options when creating your quiz. You should choose the options which work best and provide evidence of your trialling including the
iterative trialling of components.

•	 Comment your code.
•	 Code, test and debug each component or sub-component before moving on. Create a new version of your program for each iteration.
•	 Provide evidence that you have iteratively trialled the program components.
•	 Systematically test your code (follow your test plan). Include screenshots (or video evidence) showing that your program’s output matches the plan’s

expected values and has been tested with relevant boundary cases.

Additional evidence

Provide evidence to show how you have described and addressed the relevant implications for your program, for example:

•	 How your quiz will be suitable for your chosen audience
•	 How you will honour copyright
•	 How you will make sure that your quiz has taken into account relevant HCI principles.

HAND IN

•	 Your plan and testing evidence
•	 All the code that you have developed including the code for each component. Please clearly name your files so that it is easy to identify the code for

the final, working outcome.

Achievement standard: 	 91883 and 91884
Standard title: 	 Develop a computer program (4 credits)
	 Use basic iterative processes to develop a digital outcome (6 credits)
Total credits: 	 10

 9Teaching and learning programme 1 | Planning & Programming (Python)

TEACHER GUIDELINES

The following guidelines are supplied to support teachers/kaiako to carry out valid and consistent assessment using this internal assessment resource.

Teachers/kaiako need to be very familiar with the outcome being assessed by the achievement standard/s. The achievement criteria and the explanatory
notes contain information, definitions and requirements that are crucial when interpreting the standard and assessing students/ākonga against it.

Please be aware that NZQA have read the assessment task but it will still need to be checked by the teacher using the assessment to ensure it meets all
requirements.

CONTEXT/TE HOROPAKI

This assessment activity requires students to develop a computer program that is suitable for the intended audience. Students should use basic itera-
tive processes to develop a computer program.

During this process, students will develop a refined computer program. They need to ensure that they:

•	 use appropriate tools and techniques

•	 test the outcome thoroughly

•	 describe and address any implications and end-user considerations.

It is strongly recommended that students make a maths-type quiz as that will easily allow them to randomly generate unique questions each time the
quiz is played. It also allows them to generate material that does not break copyright.

CONDITIONS/NGĀ TIKANGA

Where a group approach is used, the teacher needs to ensure that there is opportunity for each student to provide evidence for all aspects of the
standards.

Schedule regular progress checks with the students during this activity.

Conditions of Assessment related to this achievement standard can be found at http://ncea.tki.org.nz

RESOURCE REQUIREMENTS/NGĀ RAUEMI

Students will need access to computers running Python and word processing software to allow them to complete the required documentation.

 10Teaching and learning programme 1 | Planning & Programming (Python)

TEACHER GUIDELINES

ADDITIONAL INFORMATION/HE KŌRERO ATU

Planning:

Students should plan how they will develop their computer program.

The planning should include research into issues regarding their chosen theme (eg, writing questions with suitable content and/or ensuring the
questions are at an appropriate level for the intended audience). Their planning should also include evidence of breaking down the project into
components that need to be included in their outcome. For example, when developing a computer program for the quiz, the components may include
generating questions, getting (and validating) user answers, providing feedback on user answers and keeping track of the number of questions that
have been answered correctly. This could involve using programming techniques such as, the use of exceptions where required, loops to replace
repeated code, functions, variables, collections and various user interface elements.

Planning should be undertaken in a manner that suits the outcome and could include sketches, wireframes, storyboards, or mock-ups. Students may
use online interactive or collaborative planning tools.

Trialling:

Students should iteratively trial the components to be included and refine their outcome based on the evidence of their trialling. Students should also
provide evidence that they have planned for expected cases to test the outcome and carried out testing to improve and refine their outcome.
The final outcome should include evidence that the student has described and addressed a range of relevant implications and end-user considerations.

Outcome:

Students will produce an individual computer program that is appropriate for the teaching and learning programme. Teachers should ensure the rigour
of the outcome is appropriate for level 6 of the NZ Curriculum (eg, has not been produced through simple modification of pre-designed templates and/
or drag and drop WYSIWYG applications). The computer program that the student is being assessed on should be original coding, which has been
developed by the student. However, they may also incorporate other open-source or royalty-free media that they have not developed, as appropriate
to the outcome. For example, they may include an open-source or royalty-free soundtrack or images that they have not developed but have the
permission (or appropriate licence type) to include in the outcome.

 11Teaching and learning programme 1 | Planning & Programming (Python)

ASSESSMENT SCHEDULE: DEVELOP A COMPUTER PROGRAM (91883)

EVIDENCE/JUDGMENTS FOR ACHIEVEMENT/PAETAE EVIDENCE/JUDGMENTS FOR ACHIEVEMENT WITH
MERIT/KAIAKA

EVIDENCE/JUDGMENTS FOR ACHIEVEMENT WITH
EXCELLENCE/KAIRANGI

Develop a computer program. Develop an informed computer program. Develop a refined computer program.

The student has:

•	 written a simple, functional quiz program in the
language of their choice. The program may not
be structured very well.

For example (partial evidence)

The student has written a program that performs
the specified task, using a suitable programming
language. The program includes:

•	 variables which store at least two different data
types

•	 sequence, selection and iteration control
structures

•	 input either from a user or an external source

•	 either data stored in lists or arrays or dictionary
or user defined methods, procedures or
functions.

Note that BOTH functions AND lists are not
required to pass this standard.

The quiz works as expected.

The student has:

•	 documented the program with variable names
and comments that describe code function and
behaviour

For example (partial evidence)

There are frequent clear comments throughout
the code that helps to describe relevant functions
or sections of code.

The variable names clearly describe the data they
hold:

•	 eg, # this function tests that the user input is a
number. It will continue to ask for input until the
input is a number.

•	 eg, answer = is_a_number(question)

The student has:

•	 ensured that the program is a well-
structured, logical solution to the task

For example (partial evidence)

The code is clean, concise, efficient and easily
readable. The main program may be short and
might consist of multiple reusable user defined
functions which do most of the logic and
processing.

The layout might include sections as follows
(some of the material might be in a loop to
allow multiple questions to be asked until a
condition is met)

•	 import modules (eg, import random)

•	 user-defined functions

•	 set-up constants

•	 initialise variables

•	 generate/ask question

•	 calculate correct answer

•	 get user answer and check it is valid

•	 compare user answer with correct answer
and update score/counters

•	 give user feedback.

 12Teaching and learning programme 1 | Planning & Programming (Python)

ASSESSMENT SCHEDULE: DEVELOP A COMPUTER PROGRAM (91883)

The student has:

•	 set out the program code clearly, documenting
the program with comments

For example (partial evidence)

Comments are present but may not be particularly
descriptive or frequent:

•	 eg # this code creates the quiz loop

The student has:

•	 tested and debugged the program to ensure that
it works on a sample of expected cases.

For example (partial evidence)

The student has shown some evidence of expected
cases that were used to test and debug the
program and show that the program works when
the user inputs data that is expected.

Testing may be trial and error rather than clearly
thought out.

The student has:

•	 followed conventions of the chosen
programming language

For example (partial evidence)

The student has followed common programming
conventions for their chosen language.

Python files and functions contain a docstring
explaining the purpose of the program or function.
For example, in Python

- Constants are ...

- Variable names are ...

Function definitions appear before loose lines of
code and the main section of code is all at the
bottom, not between the functions, thus making
the program easier to read.

The student has:

•	 made the program flexible and robust

For example (partial evidence)

The student has used methods, functions,
procedures, actions and control structures
effectively.

User input is checked to ensure that it is valid.

Expected, boundary and invalid user input is
handled correctly <see testing>.

Constants, variables and derived values are
used instead of hard coded values.

The student uses a series of ‘if’, ‘elif’, ‘else’
statements rather than multiple, single ‘if’
statements: For example, to check a user
answer where ‘x’ is a special exit code, their
code might say:

if user_ans == ‘x’:
break out of the loop

elif user_ans == correct
do something

else
do something

rather than separate statements
if user_ans == ‘x’:

break out of loop
if user_ans == correct

do something
if user_ans != correct

do something

 13Teaching and learning programme 1 | Planning & Programming (Python)

ASSESSMENT SCHEDULE: DEVELOP A COMPUTER PROGRAM (91883)

The student has:

•	 tested and debugged the program in an organised
way to ensure that it works for expected and
relevant boundary cases.

For example (partial evidence)

The student tests frequently during development
(observed), and the final program works when the
user inputs the data that is expected and checks
or handles when the data is outside specific
thresholds.

The student may have kept some form of notes
showing what was tested and the outcome of that
testing.

Test cases by the student include expected and
boundary cases.

The code has been tested for unexpected cases
(eg: if an integer is expected, the code has been
tested for a decimal <invalid> and string <invalid>).
Students may have used ‘try/except’ code to
ensure that their program handles invalid data
gracefully.

The student has:

•	 comprehensively tested and debugged the
program.

For example (partial evidence)

The student tests their program in a systematic
way to ensure that it works correctly for all logical
pathways.

Test cases have been well thought out and notes
may have been made showing that the code
works as expected for all cases. The student has
checked all the logical pathways for their program
to ensure that it works as expected.

Final grades will be determined on a holistic examination of the evidence provided against the criteria in the achievement standard.

All supporting materials are supplied with this programme and can be found on the TKI website.

 14Teaching and learning programme 1 | Planning & Programming (Python)

ASSESSMENT SCHEDULE: USE BASIC ITERATIVE PROCESSES TO DEVELOP A DIGITAL OUTCOME (91884)

EVIDENCE/JUDGMENTS FOR ACHIEVEMENT/PAETAE EVIDENCE/JUDGMENTS FOR ACHIEVEMENT WITH
MERIT/KAIAKA

EVIDENCE/JUDGMENTS FOR ACHIEVEMENT WITH
EXCELLENCE/KAIRANGI

Use basic iterative processes to develop a
digital outcome.

Use basic iterative processes to develop an
informed digital outcome.

Use basic iterative processes to develop a
refined digital outcome.

The student has:

•	 planned a digital outcome to address a problem,
need, opportunity or interest.

For example (partial evidence)

The student researches issues relating to quizzes,
examines user preferences and plans how they
are going to incorporate these through creating
sketches and interactive wireframes. The
student has used an online tool to plan out the
development process.

The student has:

•	 developed the digital outcome by decomposing
it into smaller components.

For example (partial evidence)

The student decomposes their basic computer
game into the components that need to be
developed and tested such as graphics, functions,
user interface, etc.

The student has:

•	 used information from testing and trialling to
improve the outcome.

For example (partial evidence)

The student provides screen shots with a brief
annotation that shows the improvements in the
quiz mechanics that were made after making
changes. They also provided a short video
to demonstrate improved functionality after
correcting a bug in the code.

The student has:

•	 trialled multiple components and/or techniques
and selects those which ensure the outcome
functions as intended.

For example (partial evidence)

The student trials two different techniques for
performing a particular aspect of their quiz
and selects the choice that does not cause
functionality issues. The student trials two
different question generating techniques and
chooses the one that is most efficient.

The student has:

•	 applied information from planning, testing
and trialling of components to develop a high
quality outcome.

For example (partial evidence)

•	 The student has provided evidence that their
planning has allowed them to meet project
timelines and include all the planned for
components and information. Their outcome
functions as intended and has no obvious
errors in functionality or presentation of the
information. Evidence gained from trialling
and thorough and organised testing has been
integrated into the outcome in an on-going
manner to ensure the outcome is of high
quality, including aesthetics, functionality and
usability.

 15Teaching and learning programme 1 | Planning & Programming (Python)

ASSESSMENT SCHEDULE: USE BASIC ITERATIVE PROCESSES TO DEVELOP A DIGITAL OUTCOME (91884)

The student has:

•	 planned and trialled components of the outcome
in an iterative manner.

For example (partial evidence)

The student plans and tests the code for the quiz
loop. They next plan and test the question and
answer part of the quiz. They next plan and test
the feedback part of the quiz. The check that quiz
is easy to use and understand. Each component is
planned and tested in an iterative manner until the
final game quiz is produced

The student has:

•	 tested that the programming outcome functions
as intended.

For example (partial evidence)

The student plans testing the functionality of the
quiz with various users to ensure the game works

The student has:

•	 described the relevant implications.

For example (partial evidence)

The student spoke to students from their target
audience to determine their quiz preferences.
The student recognises that it is unethical to use
copyrighted questions. They have recognised that
quiz layout will affect the enjoyment of using the
quiz. However, the student may not have chosen the
best solution to address the considerations or could
have more fully addressed these considerations.

The student has:

•	 addressed any relevant implications .

For example (partial evidence)

The student addresses that fact that it is unethical
to use copyrighted questions by making up
their own questions / using creative commons
material that has been correctly attributed. They
also ensure that any images used in the quiz are
copyright free. They have addressed usability
and aesthetic considerations through testing their
game with a range of end users.

Final grades will be determined on a holistic examination of the evidence provided against the criteria in the achievement standard.

All supporting materials are supplied with this programme and can be found on the TKI website.

