
Level 6 – New Zealand Curriculum

Digital Technologies | Hangarau Matihiko

Game development

Teaching and learning programme

Developed by Kath Langman, Hillcrest High School 2017

The full teaching and learning programme resources,
associated materials and an assessment task will be
supplied in 2018.

External links to websites
The Ministry of Education does not accept any liability
for the accuracy of information on external websites, nor
for the accuracy or content of any third-party website
accessed via a hyperlink from this resource. Links to
other websites should not be taken as endorsement of
those sites or of products offered on those sites. Some
websites have dynamic content, and we cannot accept
liability for the content that is displayed.

Published 2017 by the Ministry of Education
PO Box 1666, Wellington 6011, New Zealand

www.education.govt.nz

All rights reserved

Copyright © Crown 2017

 1

By the end of this teaching and
learning programme, students will
be able to:
• understand the requirements of

game development

• follow Agile processes to develop a fun
and entertaining game in a programming
language of their choice.

Duration (terms, weeks,
teaching periods)
1 term: 9–10 weeks

Key teaching and learning concepts –
the big ideas
Game development principles; Agile
software development methodologies
(iterative development)

Alignment to NZC and/or
Te Marautanga

DTHM – Computational thinking for digital
technologies: Progress outcome 6
• Areas of modular structured programming.

DTHM – Designing and developing digital
outcomes: Progress outcome 4
• Iterative development of a digital outcome.

NZC – Technology: Technological Practice,
level 6
• Working through the technology process of

planning, brief development and outcome
development and evaluation.

Key competencies focus areas: Managing
self and relating to others
• Managing their digital work and time

management to meet project milestones

• Relating to how others think and feel when
using digital solutions.

Links to other learning areas
• Technology

• Maths

• Design

Teaching and learning pedagogy
Group work – teachers could allow students
to work in groups of 2–3 students on a larger
game.

Differentiation – allowing students to work at a
pace and level they are capable of.

Shared learning – encouraging students to
share their ideas, gain feedback, and seek out
appropriate solutions.

Prior knowledge/place in
learning journey
This would ideally be suitable to teach in terms
2 or 3 of a year 11/NCEA Level 1 course after
introductory programming concepts have
been taught.

Students are expected to have basic
understanding of a programming language
prior to this programme. For example,
Visual Basic, Scratch, Python, Small Basic,
Gamemaker.

Teachers will need to work with students to
create an initial proposal. This will be updated
and modified as part of the iterative process.

Summary
This programme will develop students’ understanding of the requirements of game
development and Agile processes. Students will learn to use Agile Scrum methodologies to
develop a successful digital outcome.

 2

Resources required
• computers

• programming development environment

• file-sharing method

• pen/paper/scanner/camera

• coloured paper/scissors/pens

• Post-it notes

How you might adapt this in your
classroom
Teachers could set a theme for all students to
work on. Possible themes could be: historical,
futuristic, environmental issues or awareness,
sport, water or ocean.

Assessment
AS91884 (1.8): Use basic iterative processes
to develop a digital outcome (6)

 3

The Learning context:

What is being covered Approximate
duration

Specific Learning Outcomes
Students will be able to:

Learning Activities Resources

Research game
development

1 week (4 hours’
class time)

• Understand the process of
developing a game

• Review of brief/feedback

• Set up trialling and testing log,
understanding the requirements

• Case study – Blackout sports (concept
designs)

• Tangential learning or edutainment

• How to be creative

• What makes a good game?

• Game design elements

• Trialling and testing
log template
(student use)

• Game design
template (student
use)

• 1 Game
development
teacher notes PPT

HCI analysis ½ week (2
hours’ class
time)

• Analyse game interfaces to
understand what makes a
good user interface

• What are heuristics?

• Examples of game elements that relate
to the heuristics

• 2 HCI teacher notes
PPT

Planning and modelling 2 weeks (6–8
hours’ class
time)

• Have a clear guide to what
they are going to make and be
open to changing their ideas
based on feedback

• Choose sketching/designing tools
(trailling)

• Get feedback and modifying designs

• Implications: what do we need to
consider and why?

• Create a paper prototype & get
feedback

• 3 Modelling teacher
notes PPT

Term outline

 4

The Learning context (continued):

What is being covered Approximate
duration

Specific Learning Outcomes
Students will be able to:

Learning Activities Resources

Agile ½ week (2
hours’ class
time)

• Understand what Agile
software development is and
how it can improve team work

• What is Agile software development
(Scrum)?

• How can we use it for our project?

• What tools shall we use (trialling)? Eg:
Post-its, Trello

• Set up a Scrum board

• 4 Agile teacher
notes PPT

Game development 5 Weeks • Work in an iterative way to
develop small components of
their game

• Iterative process of building, trialling,
testing and refining.

• Regular weekly “stand-up” meetings
and reviewing/updating of tasks

• Consider relevant implications

• 5 Making your
game teacher notes
PPT

Final evaluation and
GameCon

½ week
(2 hours’
class time)

• Show off their games and
reflect on the project,
positively and constructively
learn from the process.

• Measure against requirements/
specifications in proposal/brief

• Hold a game convention (GameCon) –
game testing

• What lessons have we learnt about:

• Agile, working with teams?

• breaking down big problems into
smaller components?

• game and software development?

• Make notes for next year’s class or next
time you make something

