
Level 6 – New Zealand Curriculum

Digital Technologies | Hangarau Matihiko

Planning and programming (Python)

Teaching and learning programme

Developed by Jennifer Gottschalk,
Whangaparaoa College 2017

The full teaching and learning programme resources,
associated materials and an assessment task will be
supplied in 2018.

External links to websites
The Ministry of Education does not accept any liability
for the accuracy of information on external websites, nor
for the accuracy or content of any third-party website
accessed via a hyperlink from this resource. Links to
other websites should not be taken as endorsement of
those sites or of products offered on those sites. Some
websites have dynamic content, and we cannot accept
liability for the content that is displayed.

Published 2017 by the Ministry of Education
PO Box 1666, Wellington 6011, New Zealand

www.education.govt.nz

All rights reserved

Copyright © Crown 2017

 1

By the end of this teaching and
learning programme, students
will be able to:
•	 decompose a problem into smaller

sub-problems

•	 create and test code that solves each
problem

•	 combine the code into a fully functional
program

•	 test that the program is easy to use.

Duration (terms, weeks,
teaching periods)
13 weeks including assessment; this assumes
five hours class time per week.

Key teaching and learning concepts –
the big ideas
•	 A problem can be decomposed into smaller

sub-problems.

•	 Each sub-problem can be developed
and tested.

•	 The code fragments can then be composed
into a fully functional program.

•	 Testing should include boundary and
unexpected values.

•	 Functions can be used to avoid repeating
code.

•	 Usability is important! Volunteers can be
asked to test code, and changes can then
be made to ensure that the final outcome
is easy to use.

Alignment to NZC and/or
Te Marautanga
Students will:

•	 design and develop a basic program

•	 ensure that their outcome is easy to use
(preferably by including some usability
testing as part of the process)

Summary
The teaching and learning programme is based around an eBook/tutorial that includes
embedded video. Students are given several problems related to games of chance, and they
are encouraged to develop programs to solve the problems. No prior programming knowledge
is assumed.

•	 be ethical when it comes to designing and
creating their outcome; specifically, they will
honour copyright

•	 meet the criteria set out in achievement
standards 91883 and 91884.

Links to other learning areas

This programme involves developing games
of chance and links to the Chance and Data
standards in mathematics.

Teaching and learning pedagogy
The programme makes considerable use of
‘flipped’ learning, where the process has been
videoed and students are encouraged to
develop their own programs by following the
video tutorials. They are also encouraged to
go beyond the basics where possible. Using
an eBook with embedded video means that
teachers are free to work with individuals
and trouble-shoot in a way that would not
be possible using more traditional methods.
Teachers could encourage students to
collaborate and work in small groups during
the teaching and learning.

 2

Prior knowledge/place in
learning journey
No prior knowledge is assumed. If students
have programmed before, this programme
will help to formalise their learning and also
ensure that they develop good coding (and
design) habits.

Resources required
•	 Python

•	 Google Documents and Word

Software used:

•	 Python 3.x

•	 Pycharm (optional but very useful)

How you might adapt this in your
classroom
The tasks in the support files area can be
modified to suit a given class. Each task has
suggestions for extension activities, and
students should be encouraged to go beyond
the basics if they have prior programming
experience. Whilst the programme is focused
on Python programs, students could be
encouraged to develop similar outcomes in the
language of their choice.

Assessment
An assessment task will be created for this
programme. The default task asks students
to create a mathematics quiz. It is hoped that
student aiming for Merit and Excellence grades
will go beyond the basics in their assessment
and use this an opportunity to create a high-
quality outcome showing what they have
learned.

 3

Term outline

The Learning context:

What is being
covered

Approximate
duration

Specific Learning Outcomes
Students will be able to:

Learning Activities

Basic skills 5 hours
maximum

Learn or review how to:

•	 name variables

•	 get user input

•	 loop code

•	 cope with unexpected input

•	 write functions.

•	 Discuss the importance of commenting code

•	 Learn how to name variables correctly

•	 Learn how to get user input and the difference between strings
and integers

•	 Learn how to write ‘if’ statements and use <, >, ==, etc

•	 Learn how to write ‘while’ loops

•	 Learn how to implement try or except code

•	 Combine what we have learned to create a number checker

•	 Change our number checking code into a function.

Week 1 Weeks 2 & 3 Weeks 4 & 5 Weeks 6 & 7 Weeks 8 & 9 Weeks 10 & 11 Weeks 12 & 13

Skills intro Lucky unicorn task Higher/lower
game

Rock, paper,
scissors

Collect them all Car racer game Assessment

Programmes: The materials below are used for each task.

•	 ePub

•	 Support files

•	 Documentation template

•	 Program planning helper

 4

The Learning context (continued):

What is being
covered

Approximate
duration

Specific Learning Outcomes
Students will be able to:

Learning Activities

Lucky unicorn task 10 hours •	 Break down the task

•	 Code and test each section

•	 Create a fully working
program from the
components

•	 Test that the program
is usable.

•	 Analyse the ‘lucky unicorn’ problem and break it down into a series
of smaller components

•	 Create test plans for each component (note that this can be done at
the start of the task, or test plans can be generated before creating
a given component)

•	 Learn how to create ‘for’ loops (ie, ‘loop Interlude’)

•	 Randomly choose items from a list

•	 Check that the probability of getting a unicorn is not too high

•	 Set up payment mechanics

•	 Set up end-game mechanics

•	 Combine all the sub-programs into a fully functioning program

•	 Usability test the program

•	 Fix the output statements so they are easy to read

•	 Retest that the program works correctly

Checkpoint 1:

Submit the entire ‘lucky unicorn’ program and the associated
documentation for feedback. Your program may well be different
from the one in the video walkthrough.

 5

The Learning context (continued):

What is being
covered

Approximate
duration

Specific Learning Outcomes
Students will be able to:

Learning Activities

Higher/lower
game

10 hours •	 Break down the task

•	 Code and test each section

•	 Create a fully working
program from the
components

•	 Test that the program
is usable.

•	 Decompose the problem and create test plans for the various components
(note that test plans can be created at a later date if preferred, as long as
they are generated before the code for that section is written)

•	 Create the game by using what you learned in ‘lucky unicorn’ and following
the provided videos for ‘new’ code

•	 If possible, create a fully featured game rather than a basic version.

Checkpoint 2:

Submit the entire ‘higher/lower’ program and the associated documentation
for feedback. Your program may well be different from the one in the
video walkthrough.

Rock, paper,
scissors

10 hours
maximum

•	 Break down the task

•	 Code and test each section

•	 Create a fully working
program from the
components

•	 Test that the program
is usable.

•	 Decompose the problem and create test plans for the various components
(note that test plans can be created at a later date if preferred, as long as
they are generated before the code for that section is written)

•	 Create the game by using what you have learned in previous tasks

•	 If possible, make the game your own. Consider how you’d like the scoring
to work (eg, best of x or the first to x).

Teacher note: Students should be able to compare user and computer choice
using five ‘if’ statements. If they want to use more than that, encourage
them to think about how they can do it in less. Using more statements is OK
and will work but it is inefficient and probably indicates that the student is
working at an A level.

Checkpoint 3:

Submit the entire ‘Rock, paper, scissors’ program and the associated
documentation for feedback

 6

The Learning context (continued):

What is being
covered

Approximate
duration

Specific Learning Outcomes
Students will be able to:

Learning Activities

Collect them all 10 hours
maximum

•	 Break down the task

•	 Code and test each section

•	 Create a fully working
program from the
components

•	 Test that the program
is usable.

•	 Decompose the problem and create test plans for the various components
(note that test plans can be created at a later date if preferred, as long as
they are generated before the code for that section is written)

•	 Create the tool by using what you learned in previous tasks. It is OK
to recycle or repurpose functions that you have used in previous tasks.

Checkpoint 4:

Submit your ‘collect them all’ and the associated documentation
for feedback.

Car racer game 10 hours •	 Break down the task

•	 Code and test each section

•	 Create a fully working
program from the
components

•	 Test that the program
is usable.

•	 Decompose the problem and create test plans for the various components
(note that test plans can be created at a later date if preferred, as long as
they are generated before the code for that section is written)

•	 Create the game by using what you learned in previous tasks. It is OK to
recycle or repurpose functions that you have used in previous tasks.

Teacher note: There are a wide number of possible correct solutions to this
task. Students could be encouraged to use the turtle module and race turtles
instead of cars. This entire exercise is an extension task, and if students
don’t get this far, that is not a problem. This is really an opportunity for kids
to explore and have a bit of fun. My solution uses 2-dimensional arrays, and
this is not required at level 1. Your very top students might need to know that
functions can only return one thing, but that thing can be a list.

Checkpoint 5:

Submit your ‘car racer’ game and the associated documentation
for feedback.

